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Transition to turbulence in an elliptic vortex 
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Stability and transition to turbulence are studied in a simple incompressible two- 
dimensional bounded swirling flow with a rectangular planform ~ a vortex in a box. 
This flow is unstable to three-dimensional disturbances. The instability takes the form 
of counter-rotating swirls perpendicular to the axis which bend the vortex into a 
periodic wave. As these swirls grow in amplitude the primary vorticity is compressed 
into thin vortex layers. These develop secondary instabilities which roll up into 
vortex tubes. In this way the flow attains a turbulent state which is populated by 
intense elongated vortex tubes and weaker vortex layers which spiral around them. 
The flow was computed at two Reynolds numbers by spectral methods with up 
to 2563 resolution. At the higher Reynolds number broad three-dimensional shell- 
averaged energy spectra are found with nearly a decade of Kolmogorov k-5/3  law 
and small-scale isotropy. 

1. Introduction 

by the streamfunction 
We study the three-dimensional instability of the two-dimensional flow described 

(1) 
A sin blx sin b2y 

b: + bz 
Y =  

and the nonlinear growth of perturbations from this flow. Here bl = n/L1, b2 = n/L2. 
This is a swirling flow in a box which is bounded by 0 < x < L1, 0 < y < L2 and is 
infinite in the z-direction. This flow is a solution of the Navier-Stokes equation with 
A = exp(-v(b: + bi)t) which slowly decays with time. We seek a viscous solution 
which starts near this one and slips along the impenetrable boundaries with zero shear 
stress. The vorticity of the basic flow is w, = A sin blx sin b2y which has maximum 
value A at the centre of the box and drops to zero at the boundaries. The resulting 
flow can be thought of as a captive vortex. 

We denote by E = L1/L2 the aspect ratio of the box. What is interesting about 
this flow is that when E # 1 it is unstable to three-dimensional disturbances. Periodic 
disturbances along the z-direction grow with time causing the captive vortex to 
distort into a wavy configuration. As the instability grows components of vorticity 
perpendicular to the z-axis squeeze the vorticity into sheet-like structures. Ultimately 
these sheets develop secondary instabilities and break up into a turbulent mixture of 
intense vortex tubes. However, when E = 1 the flow is completely stable to small 
perturbations. 

The streamline pattern of the basic flow is elliptical in the central part of the box, 
with aspect ratio the same as that of the box, becoming more rectangular as the 
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FIGURE 1. Streamline pattern and vorticity contours of the base flow for E = 2. Tick marks are at 
0.6 intervals in the x-direction and at 0.4 intervals in the y-direction. 

boundaries are approached. Figure'l shows the streamline pattern when E = 2. Bayly 
(1989) has shown, analytically and numerically, that this flow is unstable to high- 
wavenumber disturbances when the Reynolds number is large. At high wavenumber 
the instability in this bounded geometry is similar to the broad-band instability 
in an unbounded flow with elliptical streamlines and uniform vorticity studied by 
Pierrehumbert (1986), Bayly (1986), Waleffe (1989, 1990) and Landman & Saffman 
(1987). When the flow is solid body rotation (circular streamlines) stable inertial 
plane wave perturbation solutions exist in which the wave vector rotates around the 
axis with an angular velocity which depends on the angle with the axis. At one angle 
(60") the velocity field, which is perpendicular to the wave vector, rotates around it 
in the opposite sense with the same angular velocity and becomes unstable when a 
plane strain flow is superimposed. 

The work which motivated these studies was that of Orszag & Patera (1983). They 
found, numerically, a three-dimensional instability on a flow which is a superposition 
of the Blasius boundary layer flow and its primary instability, the Tollmien-Schlichting 
wave. This flow contains an elongated elliptically shaped swirling region. It is 
generally believed that this three-dimensional secondary instability plays a major role 
in transition to turbulence in shear flows (Bayly, Orszag & Herbert 1988). 

Earlier work of Gledzer et al. (1974, 1975) showed instability in a swirling flow 
within an elliptic cylinder. The experiment consisted of rotating a water-filled elliptic 
cylinder until solid body rotation was achieved. Upon stopping the cylinder the water 
continues to swirl in the container with approximately elliptical streamlines. It was 
observed that the flow rapidly developed eddies perpendicular to the rotation axis, 
with one or more cells depending on the length of the the cylinder. Malkus (1989) 
did clever experiments along these lines with a water-filled flexible cylinder which 
was made elliptical by rotating it between stationary rollers. In this flow the unstable 
wave grows for some time and then rapidly flashes into small-scale turbulence. The 
turbulence decays and when the system spins up again the unstable process repeats. 

There is another class of flows which is closely related to the present work. This is 
the bending instability of a sharp-edged vortex with uniform vorticity exposed to a 
transverse straining flow treated by Widnall, Bliss & Tsai (1974), Moore & Saffman 
(1975) and Robinson & Saffman (1984). Wavy disturbances grow on the vortex with 
wavelength comparable to the dimensions of the vortex. The qualitative explanation 
is more straightforward than for the homogeneous elliptic flows described above. 
Moore & Saffman (1975) showed that in the absence of the straining flow stable 
non-rotating planar waves exist. The strain causes such a wave to align with and 
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grow along the plane of maximum strain rate. In our flow the vorticity distribution 
rises smoothly to a maximum at the centre instead of being sharp-edged and there 
are finite boundaries, nevertheless the stability results at low wavenumber are very 
similar to those of Robinson & Saffman. 

In the present work we show numerically that the basic flow described by (1) is 
unstable at modest axial wavenumbers when the Reynolds number is greater than 
a critical value. In $ 2  we present stability diagrams which superficially resemble 
those for two-dimensional parallel flows. In $3  we present the results of nonlinear 
computations which clearly show transition to turbulent flow by the rollup of vortex 
sheets into elongated vortex tubes. Homogeneous turbulent flows showing populations 
of long vortex tubes have been computed by Kerr (1985), She, Jackson & Orszag 
(1990), Vincent & Meneguzzi (1991, 1994), Jimenez et al. (1993) and others. 

2. Stability analysis 
For the stability problem we set A = 1, neglecting the slow decay. Formally, we 

assume that the decay rate of the mean flow is slow compared to the growth rate of 
the instability. This is similar to the traditional method of studying the stability of a 
spatially growing boundary layer by treating it as a locally parallel flow. In the usual 
way we decompose the velocity field into the basic flow U plus a small perturbation 
u’. The linearized equations for J are 

V . U ’  = 0 (2) 

( 3 )  
ad 
- + v * (UU’ + d U )  = -Vp’ + V V 2 U f .  
at 

We can separate out an exponential function of z and express the remaining functions 
of x and y ,  which do not separate further, as Fourier series. The solution is thus 
represented in the form 

(4) 
1 ”  

u’ = expik,z - ii(rn, n )  exp i(rnb1x + nbzy), 
‘1 m,n=--a) 

v’ = expik,z - 2 a(m, n)  exp i(rnblx + nb2y), 
‘2 m,n=-m 

02 

w’ = exp ik,z ii,(rn, n )  exp i(rnblx + nbzy), 
m,n=--00 

with a similarly defined pressure variable. (Note that the time dependence in iiJ and 
ii, is not explicitly shown.) Upon equating coefficients of expi(k,z + mblx + nb2y) 
and using the continuity equation to eliminate the pressure, we get the following 
equations : 
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mb:(mF + nG + k , H )  
m2b: + n2bz + k: 

nb$(mF + nG + k , H )  
m2b: + n2bi + k,2 

’ 

RJm, n)  = F(m, n)  - 

Ry(m, n)  = G(m, n)  - 

’ 

and 
m 
2 
n 
4 
n 
4 
kz 
4 

F(m, n)=-- [ q m  - 1, n - 1) + ii(m - 1, n + 1) - iqm + 1, n - 1) - B(m + 1, n + l)] 
+- [ii(m - 1, n - 1) - ii(m - 1, n + 1) + ii(m + 1, n - 1) - a(m + 1, n + l)] 
-- [v”(m - 1, n - 1) + ij(m - 1, n + 1) - G(m + 1, n - 1) - E(m + 1, n + l)] 
-- [%(m - 1,n- 1) + %(m - l , n  + 1) - %(m + l,n - 1) - %(m+ 1,n + l)], 

(11) 

m 
G ( m , n ) = - -  [O(m-l,n-l)+G(m- 1 , n +  l ) - ~ ( m + l , n - l ) - a ( m + l , n + l ) ]  

4 

2 
m 
4 
k z  

4 

+n [5(m - 1, n - 1) - q m  - 1, n + 1) + ii(m + 1, n - 1) - q m  + 1, n + l)] 
+- [ii(m - 1, n - 1) - ii(m - 1, n + 1) + ii(m + 1, n - 1) - ii(m + 1, n + l)] 
+- [%(m - 1, n - 1) - %(m - 1, n + 1) + %(m + 1, n - 1) - %(m + 1,n + l)], 

(12) 

m 
4 
n 
4 

H(m,  n)=-- [%(m - 1, n - 1) + %(m - 1, n + 1) - %(m + 1, n - 1) - %(m + 1, n + l)] 
+- [%(m - l,n - 1) - G(m - 1,n + 1) + %(m + l,n - 1) - %(m + l , n  + l)]. 

(13) 
Since %(m, n)  is given by the continuity equation, 

mii(m, n )  + nqm, n)  

k, 
%(m, n)  = - 9 

it can be eliminated from R, and Ry. With these substitutions (7) and (8) are a system 
of linear equations for fi(m,n) and E(m,n) for -co < m,n < co. 

The condition that the bounding box be impenetrable requires that u’ be zero for 
the planes x = 0 and L1 for all y and z ,  and v’ be zero for the planes y = 0 and L2 for 
all x and z .  A consistent set of symmetry conditions which ensure these constraints 
are the following: for all integer values of m, n, 

q-m,  n)  = -qm,  n), 
a(-m, n)  = q m ,  n), 

%(-m, n)  = q m ,  n), 
ii(m, -n) = q m ,  n), 
q m ,  -n) = -qm,  n),  
%(m, -n) = %(m, n). 
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It follows from these that fi(0,n) = E(m,O) = 0, and that fi(0,O) = E ( 0 , O )  = 0. It can 
be shown from (7) and (8) that these symmetries persist if they are satisfied by the 
initial conditions. They mean that (7) and (8) only have to be solved on the first 
quadrant of the (m,n)-plane, i.e. m = 0,1,2,. . . , M ,  n = 0,1,2,. . . , M ,  where M is a 
large integer where we truncate the system. For instance if we write (7) with m = 0 
and some n this would require F(O,n), and from (11) we see that we would need 
fi(-l,n - 1). From (15) this is equal to -fi(l, n - 1) which is within the solution set. 
In general the column m = -1 and the row n = -1 are shifted into the solution 
set. 

From the structure of the equations one can see that an equation for mode (m, n )  is 
only coupled to four neighbouring modes (m- 1, n- l), (m- 1, n+ l), (m+ 1, n- l), and 
( m  + 1, n + 1). These are the nearest four on diagonal lines through (m, n),  and these 
four are each coupled to the nearest four on its diagonals, and so on. This means 
that the modes can be decomposed into two independent ‘checkerboard’ subsets : the 
‘even’ modes where m + n is an even integer and the ‘odd’ modes where m + n is an 
odd integer. This was pointed out by Bayly (1989). 

In the numerical work we have taken E = 2 and made the equations dimensionless 
with a characteristic length 1 and characteristic time A-’ where A is the maximum 
vorticity in the unperturbed flow. The length scale was chosen so that the dimen- 
sionless box sides are L1 = 5.6 and L2 = 2.8. The dimensionless equations are then 
written with the original notations interpreted as dimensionless quantities. In this 
scheme the Reynolds number (A12/v)  is now written as v-’. One could of course 
rescale the box so that one of the sides has unit length and rescale the Reynolds 
number and wavenumbers accordingly. The reason for our particular choice was 
determined by the requirements of the nonlinear code which will be described in the 
next section. 

Equations (7) and (8) were solved by a second-order Runge-Kutta method over 
a range of values of the parameters & and k,, the Reynolds number and axial 
wavenumber respectively. Even or odd modes were excited by taking initial conditions 
in which all the mode amplitudes were zero except fi(2,O) = 1 to generate even modes 
or fi(1,O) = 1 for odd modes. Energy growth rates p were computed from 

In( energy) p = lim 
t+m t 

where ‘energy’ is the sum of the squares of all the mode amplitudes, an L2 norm 
definition. It was necessary to integrate for a long time to approach an asymptote 
in this formula. Over the range computed we have found that the cutoff M = 40 
was adequate. The results are presented in two figures. Figure 2 shows the neutral 
curve (p  = 0) for both even and odd modes up to Reynolds numbers of 2000. The 
band of unstable wavenumbers rapidly expands with increasing Reynolds number. 
Figure 3 shows the growth rate p versus wavenumber k,  at Reynolds number 2000. 
Computations at Reynolds numbers 200, 500 and 1000 are similar, with a pronounced 
notch in the odd-mode curve. The growth rate curves computed by Robinson & 
Saffman (1984) for the strained vortex have a similar shape made up of the union of 
separate growth rate curves, for modes with differing internal structure, which look 
like inverted parabolas. The growth rate at their second peak (multiplying their result 
by 2 to get energy growth rate) is about 0.3 for E = 2, which is comparable to our 
value of about 0.24. 

A result for unstable plane waves in the unbounded flow with elliptical streamlines 
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FIGURE 2. Neutral stability cwves, E = 2: -, even modes; . . . . . ., odd modes. Heavy dot is at the 
lowest wavenumber used in the computations. The dot-dash curve is computed from equation (26). 
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Wavenumber 
FIGURE 3. Growth rate versus axial wavenumber at & = 2000, E = 2 :  -, even modes; . . . . . ., 
odd modes. The vertical dashed line is at the lowest wavenumber used in the computation. The 
dot-dash curve is computed from equation (25). 

may be obtained from Landman & Saffman (1987) 

where coo is the uniform vorticity, 00 is the inviscid amplitude growth rate and 
K 2  = k: + k; + k,". The factor 2 is inserted to convert to energy growth rate. Now 
oo/o0 is a function of E / Y  [= (E2 - 1)/(E2 + l)] where E is strain rate and y is 00/2. 
For ~ / y  < 0.7 ( E  < 2.4) it is approximately (from a figure in Landman & Saffman) 
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For an unstable wave with maximum growth rate the wave vector makes an angle of 
60" with the rotation axis, therefore kz + k; = 3kZ. Using this and v = 1/% gives 

For our case with E = 2 and coo = 1 we get 

8k2 

% 
p = 0.3 - 2. 

For fixed & this curve is a broad downward facing parabola. A portion of this curve 
is plotted on figure 3 .  A neutral curve may be derived from (25), namely 

k,  = 0.19R,"2. (26)  

This is plotted on figure 2 where the agreement is seen to be quite good at the larger 
Reynolds numbers. Equations (25) and (26) should allow a reasonable extrapolation 
to Reynolds numbers larger than those for which we have done computations. At 
higher Reynolds number the growth rate versus wavenumber curve would become 
stretched out to a higher zero crossing value while the low-wavenumber end with 
the bumps would be relatively unchanged because of the small effect of Reynolds 
number at small wavenumber. 

We conclude that the stability results are similar, and have comparable growth 
rates, to those for bending waves on a concentrated vortex at small wavenumber 
and are similar to results for an unbounded flow with elliptical streamlines at large 
wavenumber. 

3. Transition to turbulence 
Nonlinear computations have been performed on the Intel Hypercube (i860) at 

NASA-Ames Research Center using two versions of Rogallo's (1981) box code (the 
'pencil' codes) written recently by Rogallo for this parallel processing machine. The 
first version was designed to solve the Navier-Stokes equations in a box with periodic 
boundary conditions. The box is not required to have equal sides but must be 
restricted to a volume ( 2 7 ~ ) ~ .  We have taken the sides of the periodic box to be 
2L1 x 2L2 x L3 with the x and y dimensions double the size of the impenetrable box. 
By using proper symmetry in the initial conditions we can ensure that there is no 
flow across the surfaces x = 0 and L1 and y = 0 and Lz. (This is clearly not the most 
efficient way to solve this problem.) The finite dimension in the z-direction means 
that L3 is the longest axial wavelength allowed. Defining bl = n/Ll ,bz  = n/L2 as 
before and b3 = 2.n/L3, the volume constraint makes blb2b3 = 1. Allowed values of 
the axial wavenumber are therefore k, = b3k, where k is an integer. Solutions in this 
periodic system are thus of the form 

N/2-1 

u(x, y, z ,  t )  = ii(rn, n, k )  exp i(rnb1x + nb2y + kb3z) (27)  
m,n,k=-N/2 

with similar expressions for u(x, y ,  z ,  t )  and w(x, y ,  z, t). 
Conjugate symmetry (ii(-rn, -n,-k) = ii(rn,n,k)*, etc.) is imposed to ensure that 

the velocity components are real. Symmetries in the initial conditions are taken 
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FIGURE 4(a, b).  For caption see page 52. 

like those in (15)-(20) for each k .  For instance the velocity field of the basic flow, 
U = b2 sin blxcos bzy/(b? + bi), I/ = -bl cos blx sin b2y/(b: + bi) is generated by the 
four modes 

b2i 
4(b? + b;)’ 

fi(1,1,0) = f i ( l , - l , O )  = -fi(-l, 1,O) = -fi(-l,-l,O) = - (28a) 

which have these symmetries. Perturbations from this basic flow can be generated in 
many different ways and will generate different flows. For instance we could have 
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FIGURE 4(c,d). For caption see page 52. 

used random small initial perturbations. For the flow computed here, however, we 
excited both even and odd modes uniformly by 

u’ = ‘jJo.001 sin blx cos b3kz + 0.001 sin 2blx cos b3kz) (29) 
k 

with 0’ = 0 and the corresponding w’ determined from continuity. The initial mode 
amplitudes are therefore 

fi(l,O,k) = -fi(-l,O,k) = fi(l,O,-k) = 4(-l,O,-k) = -O.O01i/4, (30a) 
fi(2,0, k )  = -8(-2,0, k )  = fi(2,0, -k) = - f i ( -2 ,0 , -k)  = -O.O01i/4 (30b) 

for all integer k in wave space. (Although all wavenumbers were excited only the 
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FIGURE 4. Surfaces of vorticity, & = 2000. Tick marks are at 0.6 intervals in the x-direction and 
at 0.4 intervals in the y -  and z-directions. (a) Vorticity equal to 0.75 at T = 55.66. The maximum 
vorticity is 2.01. ( b )  Vorticity 1.04 at T = 61.71, maximum vorticity 2.78. ( c )  Vorticity 2.06 at 
T = 70.43, maximum vorticity 5.50. ( d )  Vorticity 3.60 at T = 79.09, maximum vorticity 9.61. (e )  
Vorticity 4.95 at T = 83.94, maximum vorticity 13.19. (f)  Vorticity 5.89 at T = 87.95, maximum 
vorticity 15.70. 
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FIGURE 5. Vorticity contours at the time corresponding to figure 4(c); (a) on the plane z = 0.5L3; 
(b)  on the plane z = 0. & = 2000. View is along the z-axis. Intervals on the axes are the same as 
on figure 1. 

lowest few matter because of the rapid decrease of growth rate with increasing 
wavenumber.) With the cosine dependence in the z-direction in (29) the endwalls and 
the midplane z = L3/2 will also be impenetrable (w = 0). 

Finally we chose to do the computation with E = 2 = L1/L2 and L3 = ( L I L ~ ) ~ ’ ~ .  
The volume constraint then makes L1 = 5.60, L2 = 2.8, L3 = 3.96 and then bl = 

0.56,b2 = 1.12 and b3 = 1.59. We have computed with & = 2000 and N = 128. 
(Another form of Reynolds number which could be useful is r /v = 12 755 where 
r is the circulation of the basic flow around the impenetrable box.) The lowest 
wavenumber in the initial conditions, k,  = 1.59, is shown in the stability diagrams as 
a heavy dot in figure 2 and as a vertical dashed line in figure 3. It is near the position 
of maximum growth rate: the dimensions of the box were chosen for this reason. 
With N = 128, the actual resolution in the impenetrable box is 64 x 64 x 128. 

A second version of Rogallo’s code is more efficient for this computation and 
was run at a higher Reynolds number. In this version sine and cosine FFT’s were 
implemented to maintain impenetrability of the sidewalls so that the computation 
could be confined to the impenetrable box alone. We have run this with 2563 
resolution at R, = 5000 ( r / v  = 31 888) with the same box dimensions and initial 
conditions described above. 

The major results of the computations at & = 2000 are presented in figure 4 (a-f), 



54 T. S .  Lundgren and N. N Mansour 

Y 

.... ... 

I I I I I I I I 1 I 

A 

FIGURE 6. Contours of axial velocity on the plane z = 0.25L3 at the time corresponding to figure 4(c). 
& = 2000. View is along the z-axis. Solid contours are for velocity into the page, dotted contours 
are out of page. Maximum velocities are f0.35. Intervals on the axes are the same as on figure 1. 

lo-' 

32 

FIGURE 7. Spectral density versus wavenumber at T = 87.95. & = 2000. 
A line connecting the corners of the box would be k-5/3 .  

where surfaces of constant magnitude of the vorticity are shown at six different times 
during the evolution of this flow. In each part of the figure the surface is of the 
vorticity value that is 3/8 of the maximum vorticity at this time. The time and the 
values of the surface vorticity and maximum vorticity are given in the figure caption. 
The coordinate axes shown have x to the left, y vertical and z off to the right. The 
viewpoint and illumination are from the origin. At the initial time (not shown) the 
surface is approximately an elliptic cylinder. The instability causes distortion into 
a wave oriented roughly along a 45" plane with the vortex moving downward and 
toward positive x at the ends of the box and upward and toward negative x in the 
middle. The secondary flow which causes this motion also causes the vortex to be 
greatly distorted into sheet-like structures which resemble the 'cups' found by Rogers 
& Moser (1992) in their study of the development of three-dimensional structure in a 
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FIGURE 8. Surface of Gaussian filtered vorticity equal to 0.45 at T = 87.95. The maximum filtered 
vorticity is 1.19. & = 2000. Tick marks are the same as on figure 4. 

mixing layer after the primary rollup into spanwise rollers. In figures 5(a) and 5(b) we 
look at vorticity contours on cuts through the structure shown in figure 4(c) in order 
to elucidate its structure. In figure 5(a) we have taken the cut through the middle of 
the structure along the plane z = L3/2,  with the view along the z-axis (positive z is 
into the page). Because of the symmetry imposed in the initial conditions only the 
z-component of vorticity is nonzero on this plane. The maximum vorticity in the box, 
5.5, occurs at the centre of the rather strong round vortex which is apparent here. In 
the three-dimensional rendering this vortex appears to be like a horseshoe vortex. In 
figure 5(b) the cut is at the ends of the box at plane z = 0 , where again only co, 
is non-zero and the view is along the z-axis. The maximum vorticity in the strong 
vortex layer is 3.5. 

In figure 6 we show contours of the axial velocity w in the plane z = 0.25L3 through 
the structure shown in figure 4(c). This is more regular than might have been expected 
and shows characteristics of the 1,l mode in Robinson & Saffman (1984). (The first 1 
refers to the angular wavenumber and the second to the number of nodes in the axial 
velocity.) Here despite the already complicated vorticity the underlying secondary 
flow of the instability is still evident, much amplified, with maximum velocities k0.35. 
Since w is zero at both ends of the box and in the middle, and w on the plane 
z = 0.75~53 is just the reverse of that shown in figure 6, we can picture the secondary 
flow as two eddies, one in each half of the box, with the velocity toward the centre 
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FIGURE 9(a, b).  For caption see facing page. 

of the box in the lower part and away from the centre above. Completion of this 
circulation is such as to convect the vorticity downwards and toward positive x at 
the ends while stretching it, and convecting it upward and toward negative x in the 
middle, stretching it here also. It is remarkable that this secondary motion is evident 
throughout the entire sequence of views, even at the time of figure 4(f) where it is 
quite irregular but with the main trends described above. 

As we proceed from figure 4(c) to figure 4(d) the strong vortex which was evident in 
figure 4(c) has disappeared. The central part has apparently been carried downward 
into the compressive part of the circulation which decreased its vorticity below the 
plotting level. The remnants of its sides have been stretched into the shield-shaped 
vortex sheets to each side of the centre. In the next view, figure 4(e), there is no 
vorticity at the level plotted, across the plane z = 0.5L3. This is not clear from the 
figure but when we rotated it we had an open view down the middle. The structures 
we see are mostly tube-like now, and this is even more evident in figure 4(f), which 
is the time at which the maximum vorticity in the box is largest. At later times this 
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FIGURE 9. Vorticity contours at z = 0 at selected times showing evolution of the vortex layer into 
vortex tubes. View is along the z-axis. & = 5000. Time and maximum vorticity in the plane are: 
(a) 66.8, 19; ( b )  69.7, 26; ( c )  72.0, 34; ( d )  is an enlarged view of the right-hand side of (c ) .  Colours 
range from blue at a vorticity of 3 to red at the maximum vorticity. Velocity vectors in (a, b, c)  are 
plotted with a scale factor of 0.4 with 5.8 units of length along the horizontal boundary. In ( d )  the 
scale factor is 0.1 with 1.02 units of length along the horizontal. (To convert to velocity one divides 
the vector length by the scale factor.) 

begins to decrease but the tube-like nature of the vorticity is still evident at the time 
of 103.8 when we ended the computation. 

Figure 7 shows the average of the three velocity component power spectra at the 
time of figure 4(f). (The energy spectrum is 1.5 times this quantity.) While this is quite 
broad, indicating turbulence, we do not see a -5/3 range at this Reynolds number. 
(In fact it is close to a -7/3 power.) At the higher Reynolds number we do find a 
-5/3 range. 

The overall impression of this flow is of two large counter-rotating turbulent eddies, 
each carrying many intense interacting vortex tubes. One can see their development 
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FIGURE 10. Contours of vorticity magnitude at z = 0.25L3. & = 5000. View along the z-axis. 
Time and maximum vorticity on this plane are: 69.7, 22. 

clearly in figures 4(d) and 4(e), less clearly in figure 4(f). This eddy motion was 
present the beginning as the growing secondary flow of the instabilty and was the 
controlling factor in the development of the vortex sheets. To visualize the large-scale 
swirling motion without the masking effect of the small vortices we have filtered out 
the high-wavenumber part of the velocity with a Gaussian filter of width 0.2. We 
have computed the magnitude of the vorticity in this filtered flow at the same time as 
in figure 4(f). The result is presented in figure 8 as a surface of 3/8 of the maximum 
vorticity, which is 1.19 in this filtered flow. This looks like a horseshoe vortex with two 
vortices wrapping around each of its counter-rotating legs. The head of the vortex, 
which is lifted up, contains the point of maximum vorticity. The sense of motion is 
upward between the legs of the vortex and forward over the top of the nose, which 
is the sense of rotation of the original swirling flow 

The computations at R, = 5000 are of much higher resolution (2563) but since 
details are not so easily seen in three-dimensional renderings, we show only plane 
views. Figure 9 shows a series of plane views at z = 0 of the evolution of the vortex 
sheet depicted at lower Reynolds number in figure 5(b) as it develops from a vortex 
sheet to a number of vortex tubes. (The times shown on the figure are earlier than on 
figure 5(b) because the vortex sheet develops faster at this higher Reynolds number.) 
The vortices appear to develop by the Kelvin-Helmholtz instability or by a version 
of this instability which involves stretching a vortex layer along the direction of the 
vorticity while simultaneously compressing it. This process has been studied by Lin 
& Corcos (1984) and by Neu (1984). Passot et al. (1994) have suggested that this 
mechanism is the origin of the vortex tubes observed in numerical simulations of 
homogeneous turbulence. Stretching is clearly involved in the present flow since the 
maximum vorticity on the plane grows from about 3.5 in figure 5(b) to about 34 in 
figure 9(c): this can only be caused by vortex stretching since the vorticity has only 
a z-component on this plane and the z-component of the velocity is zero. Besides 
non-uniform stretching there is a general clockwise circulation on this plane. In 
figure 9(a), which is at a later stage of development than in figure 5(b) the structure of 
the vorticity is still quite sheet-like but with several regions of more intense vorticity. 
In figure 9(b) the intense regions have become further concentrated and stronger. 
On the vortex layer which is to the left of the red spot there is a waviness which 
looks like a secondary instability. Moser & Rogers (1993) show a similar secondary 
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FIGURE 11. (a )  Three-dimensional power spectra of the component velocities versus wavenumber: 
- _ _ - -  , u2 spectrum; . . . . . ., u2 spectrum; ~ , w 2  spectrum. The straight line on the figure is 
k-5/3 .  ( b )  Energy spectrum times k5l3 .  

instability on stretching vortex sheets which appeared during the pairing process in a 
plane mixing layer computation. Figure 9(c) shows a number of strong vortices with 
weaker thin vortex layers spiralling around them. A portion of the right-hand side of 
this figure which shows this feature particularly well has been enlarged as figure 9(d). 
Spiral structures were observed by Passot et al. (1994) in a homogeneous turbulence 
computation. 

The contour plots in figure 9 are not completely typical of this flow because of the 
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symmetry of the flow at this plane. In figure 10 we show a single contour plot of the 
magnitude of the vorticity on the plane z = 0.25L3 at the time T = 69.7. This shows 
many of the same features as figure 9. However, these vortices are not perpendicular 
to the plane and have vorticity of both signs. In fact the vorticity on this plane is 
nearly isotropic with the x-component ranging from -15 to +21, the y-component 
from -14 to +12 and the z-component from -19 to +16. 

Three-dimensional velocity power spectra of the individual velocity components 
have been computed by shell averaging in wavenumber space. Figure l l ( a )  shows 
the three component spectra at a time T = 79.8 from the & = 5000 computation 
and figure l l ( b )  is a plot of the energy spectrum times k5l3 .  The figures show that 
the component spectra are nearly the same except at the lowest wavenumbers. This 
is a necessary condition for isotropy. They also show somewhat less than a decade 
of the kk5/3 power law, approximately from k = 6 to k = 35. Small-scale isotropy 
was already pronounced at time T = 72 but with a shorter Kolmogorov range. 
The existence of local isotropy in turbulent shear flows has long been controversial. 
Saddoughi & Veeravalli (1994) give a brief history of the issues and present new 
measurements which show isotropy in the inertial and dissipation spectral ranges in 
a large wind tunnel boundary layer. 

4. Discussion and conclusions 
We have studied the stability and transition to turbulence in a confined elliptic 

vortex. This relatively simple nonuniform shear flow is similar to embedded elliptic 
structures found in many naturally occurring flows. As the turbulence develops it 
consists of a large number of interacting vortex tubes which remain some distance 
from the cell boundaries in a large turbulent structure which resembles the horseshoe 
vortices found in turbulent boundary layers. Because of the simple geometry of this 
flow and its close connection with real flows an important application of this flow 
should be as a test case for large-eddy simulation (LES) models. 

Transition to turbulence in this flow is by very simple mechanisms, which may 
prove to be typical. The elliptic instability compresses the primary vorticity into thin 
vortex layers and these develop a second instability which forms into elongated vortex 
tubes. After the vortex tubes appear the flow is fully turbulent as can be recognized 
by the broad energy spectrum. 

The conventional picture of turbulence is due to Richardson (1922). The interpre- 
tation of his ideas, presented by Monin & Yaglom (1971), is that turbulence consists 
of a hierarchy of eddies of various orders. Eddies of a given order arise as a result 
of the loss of stability of larger eddies of the previous order, borrowing their energy, 
and these in turn lose their stability and transfer their energy to even smaller eddies. 
Thus there is a cascade of energy from large eddies to small. There has always been 
controversy over the nature of ‘eddies’ and some researchers prefer to think in terms 
of Fourier components, replacing ‘eddy’ by ‘wavelength’ in the above description. Our 
observations involve only two instabilities, instead of the continuum of instabilities 
which would seem to be required, and it is clear that much of the energy cascade 
takes place by continuous deformation after the vortex tubes appear. Vincent & 
Meneguzzi (1994) suggest that the energy cascade is a one-step process involving the 
rollup of vortex sheets. Lundgren (1982) and Pullin & Saffman (1992) have developed 
a turbulence model which has a continuous energy cascade. We describe this model 
briefly here because of its similarity to the flow in the present computation. The 
model consists of an ensemble of randomly oriented spiral vortex solutions of the 
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Navier-Stokes equations. In the inviscid limit these solutions consist of spiral vortex 
sheets in which the inner turns continually tighten by differential rotation while the 
vortex is being stretched along its axis (by larger scale motions). Both of these 
mechanisms cause a cascade of energy to smaller scales. With finite viscosity the inner 
turns are diffused together into a smooth vortex core and for moderate Reynolds 
numbers these vortices are similar to those found in the present computations, with 
partial spirals around central cores. The model gives a rational derivation of the k-5/3  
Kolmogorov energy spectrum and thus connects this spectrum with spiral vortices, 
which are observed in the present computation. It should be pointed out that spiral 
vortices are commonly seen in experimental turbulent flow visualizations, but are 
more difficult to find in computations. 
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